obtaining $10x = 73.1414 \dots$. We now multiply by a power of 10 to move one block to the left of the decimal point; here getting $1000x = 7314.1414 \cdots$. We now subtract to obtain an integer; here getting $1000x - 10x = 7314 - 73 = 7241$, whence $x = 7241/990$, a rational number.

Cantor's Second Proof

We will now give Cantor's second proof of the uncountability of R. This is the elegant ''diagonal'' argument based on decimal representations of real numbers.

2.5.5 Theorem The unit interval $[0,1] := \{x \in \mathbb{R} : 0 \le x \le 1\}$ is not countable.

Proof. The proof is by contradiction. We will use the fact that every real number $x \in [0, 1]$ has a decimal representation $x = 0.b_1b_2b_3\cdots$, where $b_i = 0, 1, \ldots, 9$. Suppose that there is an enumeration $x_1, x_2, x_3 \cdots$ of all numbers in [0,1], which we display as:

> $x_1 = 0.b_{11}b_{12}b_{13}\cdots b_{1n} \cdots$ $x_2 = 0.b_{21}b_{22}b_{23}\cdots b_{2n} \cdots$ $x_3 = 0.b_{31}b_{32}b_{33}\cdots b_{3n} \cdots,$
 \cdots "" "" """
" " " " " " " "" " $x_n = 0.b_{n1}b_{n2}b_{n3}\cdots b_{nn}\cdots$ "" "" """

We now define a real number $y := 0.y_1y_2y_3 \cdots y_n \cdots$ by setting $y_1 := 2$ if $b_{11} \ge 5$ and $y_1 := 7$ if $b_{11} \leq 4$; in general, we let

$$
y_n := \begin{cases} 2 & \text{if } b_{nn} \geq 5, \\ 7 & \text{if } b_{nn} \leq 4. \end{cases}
$$

Then $y \in [0, 1]$. Note that the number y is not equal to any of the numbers with two decimal representations, since $y_n \neq 0,9$ for all $n \in \mathbb{N}$. Further, since y and x_n differ in the *n*th decimal place, then $y \neq x_n$ for any $n \in \mathbb{N}$. Therefore, y is not included in the enumeration of [0,1], contradicting the hypothesis. O.E.D. $[0,1]$, contradicting the hypothesis.

Exercises for Section 2.5

- 1. If $I := [a, b]$ and $I' := [a', b']$ are closed intervals in \mathbb{R} , show that $I \subseteq I'$ if and only if $a' \le a$ and $b \leq b'$.
- 2. If $S \subseteq \mathbb{R}$ is nonempty, show that S is bounded if and only if there exists a closed bounded interval I such that $S \subseteq I$.
- 3. If $S \subseteq \mathbb{R}$ is a nonempty bounded set, and $I_S := \inf S$, sup S , show that $S \subseteq I_S$. Moreover, if J is any closed bounded interval containing S, show that $I_S \subseteq J$.
- 4. In the proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S.
- 5. Write out the details of the proof of Case (iv) in Theorem 2.5.1.
- 6. If $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ is a nested sequence of intervals and if $I_n = [a_n, b_n]$, show that $a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots$ and $b_1 \geq b_2 \geq \cdots \geq b_n \geq \cdots$.
- 7. Let $I_n := [0, 1/n]$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}$.
- 8. Let $J_n := (0, 1/n)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$.
- 9. Let $K_n := (n, \infty)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.
- 10. With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have $\eta \in \bigcap_{n=1}^{\infty} I_n$. Also show that $[\xi, \eta] = \bigcap_{n=1}^{\infty} I_n$.
- 11. Show that the intervals obtained from the inequalities in (2) form a nested sequence.
- 12. Give the two binary representations of $\frac{3}{8}$ and $\frac{7}{16}$.
- 13. (a) Give the first four digits in the binary representation of $\frac{1}{3}$. (b) Give the complete binary representation of $\frac{1}{3}$.
- 14. Show that if $a_k, b_k \in \{0, 1, ..., 9\}$ and if

$$
\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} = \frac{b_1}{10} + \frac{b_2}{10^2} + \dots + \frac{b_m}{10^m} \neq 0,
$$

then $n = m$ and $a_k = b_k$ for $k = 1, \ldots, n$.

- 15. Find the decimal representation of $-\frac{2}{7}$.
- 16. Express $\frac{1}{7}$ and $\frac{2}{19}$ as periodic decimals.
- 17. What rationals are represented by the periodic decimals $1.25137 \cdots 137 \cdots$ and $35.14653 \cdots 653 \cdots$?

If $c > 1$, then $c^{1/n} = 1 + d_n$ for some $d_n > 0$. Hence by Bernoulli's Inequality 2.1.13(c),

$$
c = (1 + d_n)^n \ge 1 + nd_n \quad \text{for} \quad n \in \mathbb{N}.
$$

Therefore we have $c - 1 \geq nd_n$, so that $d_n \leq (c - 1)/n$. Consequently we have

$$
|c^{1/n} - 1| = d_n \le (c - 1)\frac{1}{n}
$$
 for $n \in \mathbb{N}$.

We now invoke Theorem 3.1.10 to infer that $\lim_{h \to 0} (c^{1/n}) = 1$ when $c > 1$.

Now suppose that $0 < c < 1$; then $c^{1/n} = 1/(1 + h_n)$ for some $h_n > 0$. Hence Bernoulli's Inequality implies that

$$
c = \frac{1}{(1 + h_n)^n} \le \frac{1}{1 + nh_n} < \frac{1}{nh_n},
$$

from which it follows that $0 < h_n < 1/nc$ for $n \in \mathbb{N}$. Therefore we have

$$
0 < 1 - c^{1/n} = \frac{h_n}{1 + h_n} < h_n < \frac{1}{nc}
$$

so that

$$
|c^{1/n}-1| < \left(\frac{1}{c}\right)\frac{1}{n} \quad \text{for} \quad n \in \mathbb{N}.
$$

We now apply Theorem 3.1.10 to infer that $\lim_{h \to 0} (c^{1/n}) = 1$ when $0 < c < 1$. (d) $\lim(n^{1/n})=1$

Since $n^{1/n} > 1$ for $n > 1$, we can write $n^{1/n} = 1 + k_n$ for some $k_n > 0$ when $n > 1$. Hence $n = (1 + k_n)^n$ for $n > 1$. By the Binomial Theorem, if $n > 1$ we have

$$
n = 1 + nk_n + \frac{1}{2}n(n-1)k_n^2 + \cdots \ge 1 + \frac{1}{2}n(n-1)k_n^2,
$$

whence it follows that

$$
n-1\geq \frac{1}{2}n(n-1)k_n^2.
$$

Hence $k_n^2 \leq 2/n$ for $n > 1$. If $\varepsilon > 0$ is given, it follows from the Archimedean Property that there exists a natural number N_{ε} such that $2/N_{\varepsilon} < \varepsilon^2$. It follows that if $n \geq \sup\{2, N_{\varepsilon}\}\)$ then $2/n < \varepsilon^2$, whence

$$
0 < n^{1/n} - 1 = k_n \le (2/n)^{1/2} < \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, we deduce that $\lim_{n \to \infty} (n^{1/n}) = 1$.

Exercises for Section 3.1

- 1. The sequence (x_n) is defined by the following formulas for the *n*th term. Write the first five terms in each case:
	- (a) $x_n := 1 + (-1)^n$ $; \t\t (b) \t x_n := (-1)^n/n,$ (c) $x_n := \frac{1}{n(n+1)}$ $; \t(d) \t x := \frac{1}{n^2 + 2}.$
- 2. The first few terms of a sequence (x_n) are given below. Assuming that the "natural pattern" indicated by these terms persists, give a formula for the *n*th term x_n .
(a) 5, 7, 9, 11, ..., (b) $1/2$, $-1/4$, $1/8$
	- (b) $1/2, -1/4, 1/8, -1/16, \ldots$ (c) $1/2, 2/3, 3/4, 4/5, \ldots$, (d) 1, 4, 9, 16, ...
	-
- 3. List the first five terms of the following inductively defined sequences.
	- (a) $x_1 := 1$, $x_{n+1} := 3x_n + 1$,
	- (b) $y_1 := 2$, $y_{n+1} := \frac{1}{2}(y_n + 2/y_n)$,
	- (c) $z_1 := 1$, $z_2 := 2$, $z_{n+2} := (z_{n+1} + z_n)/(z_{n+1} z_n)$,
	- (d) $s_1 := 3$, $s_2 := 5$, $s_{n+2} := s_n + s_{n+1}$.
- 4. For any $b \in \mathbb{R}$, prove that $\lim_{h \to 0} (b/h) = 0$.
- 5. Use the definition of the limit of a sequence to establish the following limits.
	- (a) $\lim_{n \to \infty} \left(\frac{n}{n^2} \right)$ $n^2 + 1$ $\left(n \right)$ $= 0,$ (b) $\lim_{n \to 1} \left(\frac{2n}{n+1} \right)$ $\left(\frac{2n}{n+1}\right) = 2,$ (c) $\lim_{n \to \infty} \left(\frac{3n+1}{2n+5} \right)$ $2n + 5$ $\left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$ $;$ (d) $\lim_{n \to \infty} \left(\frac{n^2 - 1}{2n^2 + 1} \right)$ $2n^2+3$ $\left(\frac{n^2-1}{2n^2+3}\right) = \frac{1}{2}.$
- 6. Show that

(a)
$$
\lim_{n \to \infty} \left(\frac{1}{\sqrt{n+7}} \right) = 0,
$$

\n(b) $\lim_{n \to \infty} \left(\frac{2n}{n+2} \right) = 2,$
\n(c) $\lim_{n \to \infty} \left(\frac{\sqrt{n}}{n+1} \right) = 0,$
\n(d) $\lim_{n \to \infty} \left(\frac{(-1)^n n}{n^2 + 1} \right) = 0.$

- $n+1$
- 7. Let $x_n := 1/\ln(n + 1)$ for $n \in \mathbb{N}$. (a) Use the definition of limit to show that $\lim(x_n) = 0$.
	- (b) Find a specific value of $K(\varepsilon)$ as required in the definition of limit for each of (i) $\varepsilon = 1/2$, and (ii) $\varepsilon = 1/10$.

 $n^2 + 1$

- 8. Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .
- 9. Show that if $x_n \ge 0$ for all $n \in \mathbb{N}$ and $\lim(x_n) = 0$, then $\lim(\sqrt{x_n}) = 0$.
- 10. Prove that if $\lim(x_n) = x$ and if $x > 0$, then there exists a natural number M such that $x_n > 0$ for all $n > M$.
- 11. Show that $\lim_{n \to \infty} \left(\frac{1}{n} \frac{1}{n+1} \right)$ $\left(\frac{1}{n} - \frac{1}{n+1}\right) = 0.$
- 12. Show that $\lim(\sqrt{n^2+1} n) = 0$.
- 13. Show that $\lim(1/3^n) = 0$.
- 14. Let $b \in \mathbb{R}$ satisfy $0 < b < 1$. Show that $\lim(n b^n) = 0$. [*Hint*: Use the Binomial Theorem as in Example 3.1.11(d).]
- 15. Show that $\lim_{n \to \infty} \left((2n)^{1/n} \right) = 1$.
- 16. Show that $\lim_{n \to \infty} (n^2/n!) = 0$.
- 17. Show that $\lim_{n \to \infty} (2^n/n!) = 0$. [*Hint*: If $n \ge 3$, then $0 < 2^n/n! \le 2(\frac{2}{3})^{n-2}$.]
- 18. If $\lim(x_n) = x > 0$, show that there exists a natural number K such that if $n \geq K$, then $\frac{1}{2}x < x_n < 2x$.